APPLICATIONS OF
DEFINITE INTEGRALS

OVERVIEW In Chapter 5 we saw that a continuous function over a closed interval has a
definite integral, which is the limit of any Riemann sum for the function. We proved that
we could evaluate definite integrals using the Fundamental Theorem of Calculus. We also
found that the area under a curve and the area between two curves could be computed as
definite integrals.

In this chapter we extend the applications of definite integrals to finding volumes,
lengths of plane curves, and areas of surfaces of revolution. We also use integrals to
solve physical problems involving the work done by a force, the fluid force against a
planar wall, and the location of an object’s center of mass.
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FIGURE 6.1 A cross-section S(x) of the
solid S formed by intersecting S with a plane
P, perpendicular to the x-axis through the
point x in the interval [a, b].
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In this section we define volumes of solids using the areas of their cross-sections. A cross-
section of a solid S is the plane region formed by intersecting S with a plane (Figure 6.1).
We present three different methods for obtaining the cross-sections appropriate to finding
the volume of a particular solid: the method of slicing, the disk method, and the washer
method.

Suppose we want to find the volume of a solid S like the one in Figure 6.1. We begin
by extending the definition of a cylinder from classical geometry to cylindrical solids with
arbitrary bases (Figure 6.2). If the cylindrical solid has a known base area 4 and height 4,
then the volume of the cylindrical solid is

Volume = area X height = 4 - A.

This equation forms the basis for defining the volumes of many solids that are not cylin-
ders, like the one in Figure 6.1. If the cross-section of the solid S at each point x in the in-
terval [a, b] is a region S(x) of area A(x), and 4 is a continuous function of x, we can define
and calculate the volume of the solid S as the definite integral of A(x). We now show how
this integral is obtained by the method of slicing.

!{‘\_' @ = height

-_

Plane region whose Cylindrical solid based on region
area we know Volume = base area X height = Ah

FIGURE 6.2 The volume of a cylindrical solid is always defined to
be its base area times its height.



FIGURE 6.3 A typical thin slab in the

solid S.
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is the region S(x;)
with area A(x;)

NOT TO SCALE

FIGURE 6.4 The solid thin slab in
Figure 6.3 is shown enlarged here. It is
approximated by the cylindrical solid with
base S(x;) having area 4(x;) and height
Axp = xp — Xp—1.
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Slicing by Parallel Planes

We partition [a, b] into subintervals of width (length) Ax; and slice the solid, as we
would a loaf of bread, by planes perpendicular to the x-axis at the partition points
a=xy<x3 <---<x,=b.The planes P,,, perpendicular to the x-axis at the parti-
tion points, slice S into thin “slabs” (like thin slices of a loaf of bread). A typical slab is
shown in Figure 6.3. We approximate the slab between the plane at x;—; and the plane at
x; by a cylindrical solid with base area A(x;) and height Ax; = x; — x;—; (Figure 6.4).
The volume V of this cylindrical solid is 4(xy) « Axy, which is approximately the same
volume as that of the slab:

Volume of the kth slab =~ V;, = A(x;) Axy.

The volume ¥ of the entire solid S is therefore approximated by the sum of these cylindri-
cal volumes,

V ~ EVk = EA(xk) Axy.
k=1 k=1

This is a Riemann sum for the function A(x) on [a, b]. We expect the approximations from
these sums to improve as the norm of the partition of [a, b] goes to zero. Taking a partition
of [a, b] into n subintervals with |P| — 0 gives

n b
lim EA(xk) Axk=/A(x)dx.

n—>00 =1

So we define the limiting definite integral of the Riemann sum to be the volume of the
solid S.

DEFINITION The volume of a solid of integrable cross-sectional area 4(x)
from x = a tox = b is the integral of 4 from a to b,

b
V= / A(x) dx.

This definition applies whenever 4(x) is integrable, and in particular when it is
continuous. To apply the definition to calculate the volume of a solid, take the follow-
ing steps:

Calculating the Volume of a Solid

1. Sketch the solid and a typical cross-section.

2. Find a formula for A(x), the area of a typical cross-section.
3. Find the limits of integration.

4. Integrate A(x) to find the volume.

EXAMPLE 1 A pyramid 3 m high has a square base that is 3 m on a side. The cross-
section of the pyramid perpendicular to the altitude x m down from the vertex is a square
x m on a side. Find the volume of the pyramid.

Solution

1. A sketch. We draw the pyramid with its altitude along the x-axis and its vertex at the
origin and include a typical cross-section (Figure 6.5).
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Typical cross-section

FIGURE 6.5 The cross-sections of the
pyramid in Example 1 are squares.

2V9 — x?

FIGURE 6.6 The wedge of Example 2,
sliced perpendicular to the x-axis. The
cross-sections are rectangles.
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2. A formula for A(x). The cross-section at x is a square x meters on a side, so its area is
A(x) = x%.

3. The limits of integration. The squares lie on the planes from x = 0 to x = 3.

4. Integrate to find the volume:

3 3 JERE
V—/A(x)dx—/xzdx—3} =9m’. [
0 0 0

EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two planes.
One plane is perpendicular to the axis of the cylinder. The second plane crosses the first
plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

Solution We draw the wedge and sketch a typical cross-section perpendicular to the
x-axis (Figure 6.6). The base of the wedge in the figure is the semi-circle with x = 0
that is cut from the circle x> + y? = 9 by the 45° plane when it intersects the y-axis.
For any x in the interval [0, 3], the y-values in this semi-circular base vary from

y=-=V9 —x?toy = V9 — x% When we slice through the wedge by a plane perpen-
dicular to the x-axis, we obtain a cross-section at x which is a rectangle of height x whose
width extends across the semi-circular base. The area of this cross-section is

A(x) = (height)(width) = (x)(2 V9 — xz)
=20\V9 — x%.

The rectangles run from x = 0 tox = 3, so we have

b 3
V=/A(x)dx /2x\/9—x2dx
a 0

2 3 Letu = 9 — x2,
—7(9 — x2)3/2:| du = —2x dx, integrate,
3 0 and substitute back.

0+ 29
18. [

EXAMPLE 3  Cavalieri’s principle says that solids with equal altitudes and identical
cross-sectional areas at each height have the same volume (Figure 6.7). This follows im-
mediately from the definition of volume, because the cross-sectional area function A(x)
and the interval [a, b] are the same for both solids.

bl ___— Same volume

Same cross-section
area at every level

FIGURE 6.7 Cavalieri’s principle: These solids have the
same volume, which can be illustrated with stacks of coins. |



Disk

(b)

FIGURE 6.8 The region (a) and solid of
revolution (b) in Example 4.
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Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a plane region about an axis in its plane is
called a solid of revolution. To find the volume of a solid like the one shown in Figure 6.8,
we need only observe that the cross-sectional area A(x) is the area of a disk of radius
R(x), the distance of the planar region’s boundary from the axis of revolution. The area is
then

A(x) = m(radius)? = 7[R(x)]%.

So the definition of volume in this case gives

Volume by Disks for Rotation About the x-axis

b b
V=/A(x) dx=/7r[R(x)]2dx.

This method for calculating the volume of a solid of revolution is often called the disk
method because a cross-section is a circular disk of radius R(x).

EXAMPLE 4  The region between the curve y = \/;, 0 = x = 4, and the x-axis is
revolved about the x-axis to generate a solid. Find its volume.

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.8). The volume is

b
V=/ a[R(x)]? dx

= /4 w[\/;]z dx Radius R(x) = Vx for
0

rotation around x-axis
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EXAMPLE 5  The circle
Ayt =al
is rotated about the x-axis to generate a sphere. Find its volume.

Solution ~ We imagine the sphere cut into thin slices by planes perpendicular to the x-axis
(Figure 6.9). The cross-sectional area at a typical point x between —a and a is

N o= A/, — 2o
A(x) — ﬂ_yz — 71_(aZ _ x2)' R(,\). a X f0|
rotation around x-axis

Therefore, the volume is
¢ ¢ 2 2 2 x| 4 3
V=[] Ax)dx = m(a —x)dx=77ax—? =z ma. [

The axis of revolution in the next example is not the x-axis, but the rule for calculating
the volume is the same: Integrate 7(radius)? between appropriate limits.

EXAMPLE 6  Find the volume of the solid generated by revolving the region bounded
by y = V/x and the lines y = 1,x = 4 about the line y = 1.
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FIGURE 6.9 The sphere generated by rotating the circle
x? + y2 = a? about the x-axis. The radius is

R(x) =y = Va* — x? (Example 5).

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.10). The volume is

4
V=/ w[R(x)]? dx
1
4 .
2 Radius R(x) = Vix — 1
[ ﬂ-[\/; - 1] dx for rotation around y = 1

4
77-/ [x — 2\/; + 1] dx Expand integrand.
1

2 4
= W[XZ — 2.%);3/2 + x]l = 7?77 Integrate.
y
y
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FIGURE 6.10 The region (a) and solid of revolution (b) in Example 6.

To find the volume of a solid generated by revolving a region between the y-axis and a
curve x = R(y), ¢ = y = d, about the y-axis, we use the same method with x replaced by y.

In this case, the circular cross-section is
A(y) = mradius]’ = @[R(»)T,

and the definition of volume gives
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Volume by Disks for Rotation About the y-axis

d d
V=/ A(y)dy=/ 7[R(y)]* dy.

y EXAMPLE 7  Find the volume of the solid generated by revolving the region between
the y-axis and the curve x = 2/y, 1 = y = 4, about the y-axis.

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.11). The volume is

~

4
— 2
v~ [ wtror s
1
_2 4 - g 2 d Radius R(y) = %lln’
L ) x 1 y Y rotation around y-axis

4 4

S = anl-3 ] = a3
7| —dy=4w|—5 | = 4w\ | = 37 |
[yzy Y 4

EXAMPLE 8  Find the volume of the solid generated by revolving the region between
the parabola x = y? + 1 and the line x = 3 about the line x = 3.

(a)

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.12). Note that the cross-sections are perpendicular to the line x = 3 and
have y-coordinates from y = V210 y = \/2. The volume is

\/2 2
V= / 7T[R(y)] dy y= 1+ V2whenx =3
-2
- V2 2= Py Radius R(y) = 3 — (> + 1)
- 3 ’7T[ Y ] Ly for rotation around axis x = 3

(b)

V2
T 4 — 42 + v1 d Expand integrand.
/-\/2[ S
= w4 _4 3+)£\6
O N

_ 64m\V2

FIGURE 6.11 The region (a) and part of

the solid of revolution (b) in Example 7.
Integrate.

15
Yy Ry)=3-("+1
=2—y2 @%
Va2l »(3,V2)
Y >
L x L x
0 1 3 5 5
x=y2+1
a2k »(3,-V2)
(a) (b)

FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8. ]
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(x5 R(x)

Washer

FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral
fab A(x) dx leads to a slightly different formula.
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Washer cross-section
Outer radius: R(x) = —x + 3
Inner radius: r(x) = x2 + 1

(b)

FIGURE 6.14 (a) The region in Example 9
spanned by a line segment perpendicular to
the axis of revolution. (b) When the region
is revolved about the x-axis, the line
segment generates a washer.

Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolu-
tion, the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the axis of
revolution are washers (the purplish circular surface in Figure 6.13) instead of disks. The
dimensions of a typical washer are

Outer radius:  R(x)

Inner radius:  7(x)
The washer’s area is

Ax) = 7[RX)]? = #[r(x)]* = 7([R)]* = [r(x)]).

Consequently, the definition of volume in this case gives

Volume by Washers for Rotation About the x-axis

b b
V= / A(x) dx = / 7([R(x)]* = [r(x)]) dx.

This method for calculating the volume of a solid of revolution is called the washer
method because a thin slab of the solid resembles a circular washer of outer radius R(x)
and inner radius r(x).

EXAMPLE 9  The region bounded by the curve y = x> + 1 and the line y = —x + 3
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution ~ We use the four steps for calculating the volume of a solid as discussed early in
this section.

1. Draw the region and sketch a line segment across it perpendicular to the axis of revo-
lution (the red segment in Figure 6.14a).

2. Find the outer and inner radii of the washer that would be swept out by the line seg-
ment if it were revolved about the x-axis along with the region.

These radii are the distances of the ends of the line segment from the axis of revolu-
tion (Figure 6.14).

Outer radius: R(x) = —x+3

Inner radius: r(x) =x2+1



R =Vy
) 1@
A
2| w=3
S PR
«<
2 o
E J y=2xor
B 7
E )
z
]
= y:xzor
x=\[y
L L x
0 2

(b)

FIGURE 6.15 (a) The region being rotated
about the y-axis, the washer radii, and
limits of integration in Example 10.

(b) The washer swept out by the line
segment in part (a).
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3. Find the limits of integration by finding the x-coordinates of the intersection points of
the curve and line in Figure 6.14a.
2+1l=-x+3
4+x—-2=0
x+2)x—1)=0

x=-2, x=1 Limits of integration
4. Evaluate the volume integral.
b
V= / 77([R(x)]2 — [r(x)]z) dx Rotation around x-axis
a
1 7. o
— ’7T((—x + 3)2 _ (x2 + 1)2) dx Values from Steps 2
- and 3
1
= 77/ (8 — 6x — x? — x4) dx Simplify algebraically.
-2
Rl R 2

2 X X
W[Sx 3x 3 51, 3

To find the volume of a solid formed by revolving a region about the y-axis, we
use the same procedure as in Example 9, but integrate with respect to y instead of x.
In this situation the line segment sweeping out a typical washer is perpendicular to the
y-axis (the axis of revolution), and the outer and inner radii of the washer are func-
tions of y.

EXAMPLE 10  The region bounded by the parabola y = x? and the line y = 2x in the
first quadrant is revolved about the y-axis to generate a solid. Find the volume of the
solid.

Solution  First we sketch the region and draw a line segment across it perpendicular to
the axis of revolution (the y-axis). See Figure 6.15a.

The radii of the washer swept out by the line segment are R(y) = \/y, r(y) =y/2
(Figure 6.15).

The line and parabola intersect at y = 0 and y = 4, so the limits of integration are
¢ = 0and d = 4. We integrate to find the volume:

d
V= / W([R(J’)]z - [7'()/)]2) dy Rotation around y-axis

Substitute for radii and
limits of integration.
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Exercises 6.1

Volumes by Slicing

8. The base of a solid is the region bounded by the graphs of y = Vi
Find the volumes of the solids in Exercises 1-10.

and y = x/2. The cross-sections perpendicular to the x-axis are

1. The solid lies between planes perpendicular to the x-axis at x = 0 a. isosceles triangles of height 6.

and x = 4. The cross-sections perpendicular to the axis on the
interval 0 = x = 4 are squares whose diagonals run from the
parabola y = ~ Vi to the parabola y = V.

. The solid lies between planes perpendicular to the x-axis at
x = —1 and x = 1. The cross-sections perpendicular to the
x-axis are circular disks whose diameters run from the parabola
y = x?to the parabola y = 2 — x°.

_ 2
y=2-X "

. The solid lies between planes perpendicular to the x-axis at
x = —l and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose bases run from the semi-

circle y = — V1 — x? to the semicircle y = V1 — x2.

. The solid lies between planes perpendicular to the x-axis at x = —1
and x = 1. The cross-sections perpendicular to the x-axis be-
tween these planes are squares whose diagonals run from the

semicircle y = — V1 — x? to the semicircle y = V1 — x2.

. The base of a solid is the region between the curve y = 2Vsinx
and the interval [0, 7] on the x-axis. The cross-sections perpendi-
cular to the x-axis are

a. cquilateral triangles with bases running from the x-axis to the
curve as shown in the accompanying figure.

b. squares with bases running from the x-axis to the curve.

. The solid lies between planes perpendicular to the x-axis at
x = —m/3 and x = /3. The cross-sections perpendicular to the
x-axis are
a. circular disks with diameters running from the curve
»y = tanx to the curve y = secx.
b. squares whose bases run from the curve y = tan x to the
curve y = secx.

. The base of a solid is the region bounded by the graphs of
v =3x, y =06, and x = 0. The cross-sections perpendicular to
the x-axis are

a. rectangles of height 10.

b. rectangles of perimeter 20.

b. semi-circles with diameters running across the base of the solid.

. The solid lies between planes perpendicular to the y-axis at y = 0

and y = 2. The cross-sections perpendicular to the y-axis are cir-

cular disks with diameters running from the y-axis to the parabola

x = \/Syz.

. The base of the solid is the disk x> + y? = 1. The cross-sections

by planes perpendicular to the y-axis between y = —land y = 1
are isosceles right triangles with one leg in the disk.

11. Find the volume of the given tetrahedron. (Hint: Consider slices

perpendicular to one of the labeled edges.)

12. Find the volume of the given pyramid, which has a square base of

area 9 and height 5.

. A twisted solid A square of side length s lies in a plane perpen-

dicular to a line L. One vertex of the square lies on L. As this square
moves a distance 4 along L, the square turns one revolution about L
to generate a corkscrew-like column with square cross-sections.

a. Find the volume of the column.

b. What will the volume be if the square turns twice instead of
once? Give reasons for your answer.



14. Cavalieri’s principle A solid lies between planes perpendicular
to the x-axis at x = 0 and x = 12. The cross-sections by planes
perpendicular to the x-axis are circular disks whose diameters run
from the line y = x/2 to the line y = x as shown in the accompa-
nying figure. Explain why the solid has the same volume as a
right circular cone with base radius 3 and height 12.

Volumes by the Disk Method
In Exercises 1518, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.

15. About the x-axis 16. About the y-axis

Yy

17. About the y-axis 18. About the x-axis

y

1'_ y = sinx cos x
1_ —
= T
X = tan (4 y)
> X e

¢ 0 3
2

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 19-24 about the x-axis.

19. y=x% y=0, x=2 20.y=2x3 y=0, x=2

2. y=V9—x% y=0
23. y= Vecosxy, 0=x=m7/2, y=0, x=0
24, y=secx, y=0, x=—m/4, x=m/4

2. y=x—-x% y=0

In Exercises 25 and 26, find the volume of the solid generated by re-

volving the region about the given line.

25. The region in the first quadrant bounded above by the line
y= \/i, below by the curve y = secxtanx, and on the left by
the y-axis, about the line y = V2

26. The region in the first quadrant bounded above by the line y = 2,
below by the curve y = 2sinx, 0 = x = 7/2, and on the left by
the y-axis, about the line y = 2
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Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 27-32 about the y-axis.
27. The region enclosedby x = V532 x =0, y=—1, yp=1

28. The region enclosed by x = y*?,

29. Theregionenclosedbyx = V2sin2y, 0=y =7/2, x=0

30. The region enclosed by x = Vcos(my/4), —2 =y =0,
x=0
3.x=2/(y+1), x=0, y=0, y=3

2. x=V/02+ 1), x=0, y=1

x=0, y=2

Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded re-
gions in Exercises 33 and 34 about the indicated axes.

33. The x-axis 34. The y-axis

y Y

|
|
=13

X =tany

013

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 35—40 about the x-axis.

3[.y=x, y=1, x=0

36. y=2Vx, y=2, x=0
37.y=x>+1, y=x+3

38. y=4—x* y=2-—x

39. y = secux, y=\/2, —7m/4 = x = w/4
40. y = secx, y=tanx, x =0, x=1

In Exercises 41-44, find the volume of the solid generated by revolv-

ing each region about the y-axis.

41. The region enclosed by the triangle with vertices (1, 0), (2, 1), and
(1,1

42. The region enclosed by the triangle with vertices (0, 1), (1, 0), and
1,1

43. The region in the first quadrant bounded above by the parabola
y = x? below by the x-axis, and on the right by the line x = 2

44. The region in the first quadrant bounded on the left by the circle
x? + y% = 3, on the right by the line x = \/g, and above by the

line y = V3

In Exercises 45 and 46, find the volume of the solid generated by re-
volving each region about the given axis.

45. The region in the first quadrant bounded above by the curve
y = x?, below by the x-axis, and on the right by the line x = 1,
about the line x = —1

46. The region in the second quadrant bounded above by the curve

y = —x7, below by the x-axis, and on the left by the line x = —1,
about the line x = —2
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Volumes of Solids of Revolution

47.

48.

49.

50.

Find the volume of the solid generated by revolving the region

bounded by y = Vx and the lines y = 2 and x = 0 about
a. the x-axis. b. the y-axis.
c. theline y = 2. d. theline x = 4.

Find the volume of the solid generated by revolving the triangular

region bounded by the lines y = 2x,y = 0, and x = 1 about
a. the linex = 1. b. theline x = 2.

Find the volume of the solid generated by revolving the region

bounded by the parabola y = x2 and the line y = 1 about
a. the line y = 1. b. the line y = 2.
c. theliney = —1.

By integration, find the volume of the solid generated by re-
volving the triangular region with vertices (0, 0), (b, 0), (0, &)
about

a. the x-axis. b. the y-axis.

Theory and Applications

51.

52.

53.

54.

55.

The volume of a torus  The disk x> + y? = a? is revolved about
the line x = b (b > a) to generate a solid shaped like a doughnut

and called a forus. Find its volume. (Hint: f_au Va? — yrdy =
Ta 2/ 2, since it is the area of a semicircle of radius a.)

Volume of a bowl A bowl has a shape that can be generated by
revolving the graph of y = x2/2 between y = 0 and y = 5 about
the y-axis.

a. Find the volume of the bowl.

b. Related rates If we fill the bowl with water at a constant
rate of 3 cubic units per second, how fast will the water level
in the bowl be rising when the water is 4 units deep?

Volume of a bowl

a. A hemispherical bowl of radius a contains water to a depth A.
Find the volume of water in the bowl.

b. Related rates Water runs into a sunken concrete hemi-
spherical bowl of radius 5 m at the rate of 0.2 m*/sec. How
fast is the water level in the bowl rising when the water is
4 m deep?

Explain how you could estimate the volume of a solid of revolu-
tion by measuring the shadow cast on a table parallel to its axis of
revolution by a light shining directly above it.

Volume of a hemisphere Derive the formula 7 = (2/3)wR>
for the volume of a hemisphere of radius R by comparing its
cross-sections with the cross-sections of a solid right circular
cylinder of radius R and height R from which a solid right circular
cone of base radius R and height R has been removed, as sug-
gested by the accompanying figure.

-

56.

57.

58.

H

Designing a plumb bob Having been asked to design a brass
plumb bob that will weigh in the neighborhood of 190 g, you de-
cide to shape it like the solid of revolution shown here. Find the
plumb bob’s volume. If you specify a brass that weighs 8.5 g/cm?,
how much will the plumb bob weigh (to the nearest gram)?

y (cm)

_ X — 2
Y=1 36 — x

x (cm)

Designing a wok You are designing a wok frying pan that will
be shaped like a spherical bowl with handles. A bit of experimen-
tation at home persuades you that you can get one that holds
about 3 L if you make it 9 cm deep and give the sphere a radius of
16 cm. To be sure, you picture the wok as a solid of revolution, as
shown here, and calculate its volume with an integral. To the
nearest cubic centimeter, what volume do you really get?
(1L = 1000 cm?.)

y (cm)

~ xP 4+ y? =167 = 256

x (cm)

9 cm deep

I\\
-16

Max-min The arch y = sinx, 0 = x = r, is revolved about

the line y = ¢,0 = ¢ = 1, to generate the solid in the accompa-

nying figure.

a. Find the value of ¢ that minimizes the volume of the solid.
What is the minimum volume?

b. What value of ¢ in [0, 1] maximizes the volume of the solid?

Graph the solid’s volume as a function of ¢, first for

0 = ¢ = 1 and then on a larger domain. What happens to the
volume of the solid as ¢ moves away from [0, 1]? Does this
make sense physically? Give reasons for your answers.

y = sinx
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59. Consider the region R bounded by the graphs of y = f(x) > 0, 60. Consider the region R given in Exercise 59. If the volume of the

x=a>0,x=05b>a,and y = 0 (see accomanying figure). If
the volume of the solid formed by revolving R about the x-axis is
41r, and the volume of the solid formed by revolving R about the
line y = —1 is &, find the area of R.

solid formed by revolving R around the x-axis is 677, and the vol-
ume of the solid formed by revolving R around the line y = —2is
1077, find the area of R.

| Volumes Using Cylindrical Shells

In Section 6.1 we defined the volume of a solid as the definite integral V' = fabA(x) dx,
where A(x) is an integrable cross-sectional area of the solid from x = atox = b. The area
A(x) was obtained by slicing through the solid with a plane perpendicular to the x-axis.
However, this method of slicing is sometimes awkward to apply, as we will illustrate in our
first example. To overcome this difficulty, we use the same integral definition for volume,
but obtain the area by slicing through the solid in a different way.

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, like cookie
cutters. We slice straight down through the solid so that the axis of each cylinder is paral-
lel to the y-axis. The vertical axis of each cylinder is the same line, but the radii of the
cylinders increase with each slice. In this way the solid is sliced up into thin cylindrical
shells of constant thickness that grow outward from their common axis, like circular tree
rings. Unrolling a cylindrical shell shows that its volume is approximately that of a rectan-
gular slab with area A(x) and thickness Ax. This slab interpretation allows us to apply the
same integral definition for volume as before. The following example provides some in-
sight before we derive the general method.

EXAMPLE 1  The region enclosed by the x-axis and the parabola y = f(x) = 3x — x?
is revolved about the vertical line x = —1 to generate a solid (Figure 6.16). Find the volume
of the solid.

Solution  Using the washer method from Section 6.1 would be awkward here because
we would need to express the x-values of the left and right sides of the parabola in Fig-
ure 6.16a in terms of y. (These x-values are the inner and outer radii for a typical washer,
requiring us to solve y = 3x — x? for x, which leads to complicated formulas.) Instead
of rotating a horizontal strip of thickness Ay, we rotate a vertical strip of thickness Ax.
This rotation produces a cylindrical shell of height y; above a point x; within the base of
the vertical strip and of thickness Ax. An example of a cylindrical shell is shown as the
orange-shaded region in Figure 6.17. We can think of the cylindrical shell shown in the
figure as approximating a slice of the solid obtained by cutting straight down through
it, parallel to the axis of revolution, all the way around close to the inside hole. We
then cut another cylindrical slice around the enlarged hole, then another, and so on,
obtaining » cylinders. The radii of the cylinders gradually increase, and the heights of
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FIGURE 6.17 A cylindrical shell of
height y, obtained by rotating a vertical
strip of thickness Ax; about the line

x = —1.The outer radius of the cylinder
occurs at x;, where the height of the
parabola is y; = 3x; — x;> (Example 1).

-2 -1 0 1 2 3
_ 1 -
Axis of Axis of
revolution | -2 | revolution
x=-1 x=-1

(a) (b)

FIGURE 6.16 (a) The graph of the region in Example 1, before revolution.
(b) The solid formed when the region in part (a) is revolved about the
axis of revolution x = —1.

the cylinders follow the contour of the parabola: shorter to taller, then back to shorter
(Figure 6.16a).

Each slice is sitting over a subinterval of the x-axis of length (width) Axy. Its radius is
approximately (1 + x;), and its height is approximately 3x; — x;. If we unroll the cylin-
der at x; and flatten it out, it becomes (approximately) a rectangular slab with thickness Ax;
(Figure 6.18). The outer circumference of the kth cylinder is 27 - radius = 27 (1 + xy),
and this is the length of the rolled-out rectangular slab. Its volume is approximated by that
of a rectangular solid,

AV

circumference X height X thickness

27(1 + xz)+ (3xk - xkz) * Axg.

Summing together the volumes AV} of the individual cylindrical shells over the interval
[0, 3] gives the Riemann sum

n

n
EAVk = EZ’?T(xk + 1)<3xk - xkz) Axk.
k=1 k=1

Ax Outer circumference = 27 - radius = 27 (1 + x;)

Radius = 1 + x;,
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FIGURE 6.18 Cutting and unrolling a cylindrical shell gives a
nearly rectangular solid (Example 1).



The volume of a cylindrical shell of
height & with inner radius  and outer
radius R is

kX r)(h)(R -7

aR*h — wir’h = 277(
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Taking the limit as the thickness Ax; — 0 and n — 00 gives the volume integral

n

= lim > 20 + 1)(3x — x2) Axi

n—0 =1

3
/ 2m(x + 1)(3x — x2) dx

0

3
= / 2(3x% + 3x — x° — xH) dx
0

3
=27T/ (2x% + 3x — x¥) dx
0

3
_ 23,3 2_ 1 4 _ 457w
—271'[3)6 +2x 4 . R [ ]

We now generalize the procedure used in Example 1.

The Shell Method

Suppose the region bounded by the graph of a nonnegative continuous function
vy = f(x) and the x-axis over the finite closed interval [a, b] lies to the right of the vertical
line x = L (Figure 6.19a). We assume a = L, so the vertical line may touch the region,
but not pass through it. We generate a solid S by rotating this region about the vertical
line L.

Let P be a partition of the interval [a, b] by the pointsa = xy < x; < -+ < x, = b,
and let ¢, be the midpoint of the kth subinterval [x;—;, x;]. We approximate the region in
Figure 6.19a with rectangles based on this partition of [a, b]. A typical approximating rec-
tangle has height f(c;) and width Ax; = x; — x;—,. If this rectangle is rotated about the
vertical line x = L, then a shell is swept out, as in Figure 6.19b. A formula from geometry
tells us that the volume of the shell swept out by the rectangle is

AV = 2 X average shell radius X shell height X thickness
=2 (cx — L) fcr) » Axy.

Vertical axis
of revolution

o

Vertical axis
of revolution

S$)

y =fx)

Rectangle
height = f(c;)

(a) (b)

FIGURE 6.19 When the region shown in (a) is revolved about the vertical line
x = L, asolid is produced which can be sliced into cylindrical shells. A typical
shell is shown in (b).
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gl% Shell radius

2

We approximate the volume of the solid S by summing the volumes of the shells swept out
by the n rectangles based on P:

k=1

The limit of this Riemann sum as each Ax;— 0 and » — c0 gives the volume of the
solid as a definite integral:

n b
V= lim EAVk = / 27 (shell radius)(shell height) dx.

n—00 k=1
b
= / 27 (x — L)f(x) dx.

We refer to the variable of integration, here x, as the thickness variable. We use the
first integral, rather than the second containing a formula for the integrand, to empha-
size the process of the shell method. This will allow for rotations about a horizontal
line L as well.

Shell Formula for Revolution About a Vertical Line
The volume of the solid generated by revolving the region between the x-axis and
the graph of a continuous function y = f(x) = 0,L < a < x < b, about a ver-

tical line x = L is
b
y— o ( shc?ll ) ( sh.ell > .
a radius / \height

EXAMPLE 2  The region bounded by the curve y = \/J;, the x-axis, and the line x = 4
is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution  Sketch the region and draw a line segment across it parallel to the axis of
revolution (Figure 6.20a). Label the segment’s height (shell height) and distance from
the axis of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need
not do that.)

Shell radius
y

Vx = Shell height
X

g - Interval of

x / integration
-4
Interval of integration

(a) (b)

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell
swept out by the vertical segment in part (a) with a width Ax.
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The shell thickness variable is x, so the limits of integration for the shell formula are
a = 0and b = 4 (Figure 6.20). The volume is then

7 shell \ [ shell
V= L 2m (radius height d
4
=/ 27r(x)(\/;c) dx
0

4 4
=27 | xdx=2m ;xs/z = @. |
0 5 0 5

So far, we have used vertical axes of revolution. For horizontal axes, we replace the x’s
with p’s.

EXAMPLE 3  The region bounded by the curve y = \/;c, the x-axis, and the line x = 4
is revolved about the x-axis to generate a solid. Find the volume of the solid by the shell
method.

Solution  This is the solid whose volume was found by the disk method in Example 4 of
Section 6.1. Now we find its volume by the shell method. First, sketch the region and draw a
line segment across it parallel to the axis of revolution (Figure 6.21a). Label the segment’s
length (shell height) and distance from the axis of revolution (shell radius). (We drew the
shell in Figure 6.21b, but you need not do that.)

In this case, the shell thickness variable is v, so the limits of integration for the shell
formula method are @ = 0 and » = 2 (along the y-axis in Figure 6.21). The volume of

the solid is

b

_ shell shell

V= l 2m (radius) <height> &

2

—A 2m(y)(4 — y*) dy

2
= ZwA (4y = ») dy

472
= 277{2)/2 — );] = 8.

Shell height

4 —y?
Shell height

o ioyr D)

Interval of
integration
=)

I

Y Shell radius G\ Shell
¥ A radius
W/

(a) (b)

FIGURE 6.21 (a) The region, shell dimensions, and interval of integration in Example 3.
(b) The shell swept out by the horizontal segment in part (a) with a width Ay. |
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Summary of the Shell Method

Regardless of the position of the axis of revolution (horizontal or vertical), the
steps for implementing the shell method are these.

1.

3. Integrate the product 27 (shell radius) (shell height) with respect to the thick-

Draw the region and sketch a line segment across it parallel to the axis of rev-
olution. Label the segment’s height or length (shell height) and distance from
the axis of revolution (shell radius).

Find the limits of integration for the thickness variable.

ness variable (x or y) to find the volume.

The shell method gives the same answer as the washer method when both are used to
calculate the volume of a region. We do not prove that result here, but it is illustrated in
Exercises 37 and 38. (Exercise 60 in Section 7.1 outlines a proof.) Both volume formulas
are actually special cases of a general volume formula we will look at when studying dou-
ble and triple integrals in Chapter 15. That general formula also allows for computing vol-
umes of solids other than those swept out by regions of revolution.

Revolution About the Axes 5. The y-axis 6. The y-axis
In Exercises 1-6, use the shell method to find the volumes of the y y
solids generated by revolving the shaded region about the indicated ’ y= 9x
axis. ) 5k V+9
y=Vx2+1
1. 2.
1
0 0 3 X

Revolution About the y-Axis

Use the shell method to find the volumes of the solids generated by re-
volving the regions bounded by the curves and lines in Exercises 712
about the y-axis.

7.y=x, y=-x/2, x=2

8. y=2x, y=x/2, x=1

9. y=x% y=2-—x, x=0, forx=0

v
y
‘ 10. y=2—-x% y=x% x=0
_ _ 32
"—3\ A, Mm.y=2c—1, y=Vx, x=0
o/

12 y=3/(2Vx), y=0, x=1 x=4



i <x=
13. Let f(x) = {(smx)/x’ O=x=m
1, x=20
a. Show that x f(x) = sinx,0 = x = 7.

b. Find the volume of the solid generated by revolving the shaded
region about the y-axis in the accompanying figure.

y

{Sl)l:x, 0<x=mw
y=

1, x=0

0 | T

tanx)*/x, 0 <x = w/4
14, Letg(x) = {( an x)°/x, v =7/
0, x=0
a. Show that xg(x) = (tanx)%, 0 = x < 7/4.

b. Find the volume of the solid generated by revolving the
shaded region about the y-axis in the accompanying
figure.

Revolution About the x-Axis

Use the shell method to find the volumes of the solids generated by re-
volving the regions bounded by the curves and lines in Exercises
15-22 about the x-axis.

15. x=\/y, x=-y, y=2

16. x=y% x=-y, y=2, y=0
17. x =2y —y% x=0 18. x =2y —y% x=y
19. y=|x|, y=1 200 y=x, y=2x, y=2

2oy =Vy, y=0, y=x-2

22.y=\/);, y=0, y=2—-x

Revolution About Horizontal and Vertical Lines

In Exercises 23-26, use the shell method to find the volumes of the

solids generated by revolving the regions bounded by the given curves
about the given lines.

23. y=3x, y=0, x=2

a. The y-axis b. Thelinex = 4

c. Thelinex = —1 d. The x-axis

e. Theliney =7 f. Theliney = -2
24, y=x, y=8, x=0

a. The y-axis b. The line x = 3

c¢. Thelinex = —2 d. The x-axis

e. Theliney = 8 f. Theliney = —1

6.2 Volumes Using Cylindrical Shells 325

25, y=x+2, y=x°
a. The linex = 2 b. The line x =

d. The line y

([
Ll
—_

¢. The x-axis
y =4 - 3x?

a. Thelinex = 1

26. y = x*,
¢. The x-axis

In Exercises 27 and 28, use the shell method to find the volumes of the
solids generated by revolving the shaded regions about the indicated axes.
b. Theliney = 1

b. Theliney = —2/5

27. a. The x-axis
c. Theliney = 8/5

y

1 x =122 -3

|
0 1

28. a. The x-axis b. Theliney = 2

c. Theliney =5 d. Theliney = —5/8

Choosing the Washer Method or Shell Method

For some regions, both the washer and shell methods work well for the
solid generated by revolving the region about the coordinate axes, but
this is not always the case. When a region is revolved about the y-axis,
for example, and washers are used, we must integrate with respect to y.
It may not be possible, however, to express the integrand in terms of y.
In such a case, the shell method allows us to integrate with respect to x
instead. Exercises 29 and 30 provide some insight.

29. Compute the volume of the solid generated by revolving the region

bounded by y = x and y = x? about each coordinate axis using
a. the shell method. b. the washer method.

30. Compute the volume of the solid generated by revolving the trian-
gular region bounded by the lines 2y = x + 4,y = x,andx = 0
about

a. the x-axis using the washer method.
b. the y-axis using the shell method.

c. the line x = 4 using the shell method.
d

. the line y = 8 using the washer method.



